EDGE_DEPLOYMENT

Compress
LLMs by
75%

Deploy models on edge devices, reduce inference costs by 80%, and maintain 95%+ accuracy with advanced quantization.

INT8
INT4
FP16
GGUF
GPTQ
AWQ

Model Compression

Original Model32GB
Quantized Model32.0GB
0%
Size Reduction
SIZE
32.0GB
SPEED
45ms
ACCURACY
96.8%
๐Ÿ“ฑRun on mobile devices
โšก4x faster inference
๐Ÿ’ฐ80% lower costs
๐Ÿ”’On-device privacy
โš ๏ธ THE PROBLEM

LLMs Are Too
Expensive & Slow

A single GPT-4 level model costs $200K+/year to run. Inference is slow. Mobile deployment? Forget it.

๐Ÿ’ธ
$200K+
Annual GPU Costs
For a 70B parameter model
๐ŸŒ
2-5s
Response Time
Users expect < 1s
๐Ÿ“ฑ
80GB
Memory Required
Cannot fit on devices
โœ“ THE SOLUTION

Quantization Changes Everything

Compress models by 75% without losing accuracy. Deploy anywhere, run 4x faster, pay 90% less.

๐Ÿ“ฆ
75%
Size Reduction
โšก
4x
Faster Inference
๐Ÿ’ฐ
90%
Cost Savings
๐ŸŽฏ
95%+
Accuracy Retained

โŒ Before Quantization

Model Size140 GB
Memory Need80 GB VRAM
Inference Time3.2 seconds
Cost per 1M tokens$60
DeploymentCloud only

โœ“ After Quantization (INT4)

Model Size35 GB (-75%)
Memory Need20 GB VRAM
Inference Time0.8 seconds
Cost per 1M tokens$6 (-90%)
DeploymentCloud + Edge + Mobile

How Quantization Works

The science behind model compression

1

Original Model (FP32)

Neural networks store weights as 32-bit floating point numbers

Storage
32 bits per weight
Example Value
3.141592653589793
2

Quantization (INT8)

Convert to 8-bit integers, reducing precision but maintaining range

Storage
8 bits per weight
Example Value
3 (rounded)
3

Aggressive (INT4)

Further compress to 4-bit integers for maximum compression

Storage
4 bits per weight
Example Value
3 (limited range)

Precision Trade-offs

PrecisionSize ReductionSpeed GainAccuracy LossBest For
FP32 (Original)0%1x0%Training
FP1650%2x< 0.1%Cloud inference
INT875%3-4x< 1%Production
INT487.5%4-5x1-3%Edge/Mobile

Quantization Techniques

INT8 Quantization

Reduction50%
Accuracy99%
Best forGeneral purpose

INT4 Quantization

Reduction75%
Accuracy95%
Best forMobile/Edge

Mixed Precision

Reduction60%
Accuracy98%
Best forBalanced

GPTQ

Reduction70%
Accuracy96%
Best forLLMs

Choosing The Right Precision

Not all quantization is created equal

๐Ÿ”ท

FP16 (16-bit Float)

Best for: Cloud deployment with GPU acceleration
Accuracy
99.9%
Speed
2x faster
Memory
50% of original
โœ“ Advantages
  • โ€ข Minimal accuracy loss
  • โ€ข 2x smaller
  • โ€ข Hardware accelerated
โœ— Limitations
  • โ€ข Still needs significant VRAM
  • โ€ข Not suitable for mobile
๐ŸŸข

INT8 (8-bit Integer)

Best for: Production-grade inference at scale
Accuracy
98-99%
Speed
3-4x faster
Memory
25% of original
โœ“ Advantages
  • โ€ข 75% size reduction
  • โ€ข 3-4x speed boost
  • โ€ข Wide hardware support
โœ— Limitations
  • โ€ข Requires calibration
  • โ€ข Slight accuracy drop
๐ŸŸฃ

INT4 (4-bit Integer)

Best for: Edge devices, mobile, embedded systems
Accuracy
95-97%
Speed
4-5x faster
Memory
12.5% of original
โœ“ Advantages
  • โ€ข 87.5% reduction
  • โ€ข 4-5x faster
  • โ€ข Runs on CPUs
โœ— Limitations
  • โ€ข Noticeable accuracy loss
  • โ€ข Complex calibration

Quick Selector

โ˜๏ธ
Cloud Only?
โ†’ Use FP16
Best accuracy, still fast
โš–๏ธ
Balanced?
โ†’ Use INT8
Production standard
๐Ÿ“ฑ
Edge/Mobile?
โ†’ Use INT4
Maximum compression

Compression Results

Model Size
Before
32GB
โ†’
After
8GB
Inference Time
Before
250ms
โ†’
After
45ms
Memory Usage
Before
40GB
โ†’
After
10GB

Real-World Performance

Actual benchmarks from production systems

Llama 2 70B

Chatbot Assistant
Original (FP32)
Size
140 GB
Time
3.2s
Cost/req
$0.06
INT8 Quantized
Size
35 GB
Time
0.8s
Cost/req
$0.006
75% smaller4x faster90% cheaper

GPT-3.5 Level

Code Generation
Original (FP32)
Size
80 GB
Time
2.1s
Cost/req
$0.04
INT4 Quantized
Size
10 GB
Time
0.5s
Cost/req
$0.003
75% smaller4x faster90% cheaper

Throughput Comparison

FP32 Original100 tokens/sec
100 tok/s
FP16 Half Precision200 tokens/sec
200 tok/s
INT8 Quantized350 tokens/sec
350 tok/s
INT4 Aggressive450 tokens/sec
450 tok/s

Hardware Compatibility

Run quantized models everywhere

โ˜๏ธ

Cloud GPUs

Supported:
NVIDIA A100H100V100T4
Precision:FP16, INT8, INT4
Speed:Fastest
๐ŸŽฎ

Consumer GPUs

Supported:
RTX 4090RTX 3090RTX 4080
Precision:INT8, INT4
Speed:Fast
๐Ÿ“ฑ

Mobile/Edge

Supported:
Apple M2/M3SnapdragonMediaTek
Precision:INT8, INT4
Speed:Good
๐Ÿ’ป

CPUs

Supported:
Intel XeonAMD EPYCARM
Precision:INT8, INT4
Speed:Acceptable

Minimum Requirements

Model SizeOriginalINT8INT4
7B params28 GB
7 GB
RTX 3060
3.5 GB
iPhone 15
13B params52 GB
13 GB
RTX 3090
6.5 GB
M2 MacBook
30B params120 GB
30 GB
A100 40GB
15 GB
RTX 4090
70B params280 GB
70 GB
A100 80GB
35 GB
A100 40GB

Hardware Acceleration

8x faster
NVIDIA TensorRT
Optimized INT8/FP16 inference on NVIDIA GPUs
5x faster
Apple Neural Engine
Hardware acceleration on iOS/Mac devices
3x faster
ONNX Runtime
Cross-platform quantized inference

Deploy Anywhere

๐Ÿ“ฑ

Mobile

iOS & Android

๐Ÿ”ฒ

Edge

Raspberry Pi, Jetson

๐ŸŒ

Browser

WebAssembly

โ˜๏ธ

Cloud

AWS, GCP, Azure

Industry Benchmarks

Validated results from independent testing

Inference Latency

GPT-J 6B
FP32
2800ms
INT8
700ms
INT4
560ms
Llama 7B
FP32
3200ms
INT8
800ms
INT4
640ms
Mistral 7B
FP32
2900ms
INT8
725ms
INT4
580ms

Cost per 1M Tokens

GPT-J 6B
FP32
$45
INT8
$4.5
INT4
$2.25
Llama 7B
FP32
$52
INT8
$5.2
INT4
$2.6
Mistral 7B
FP32
$48
INT8
$4.8
INT4
$2.4

Accuracy Retention Across Tasks

Text Generation

BLEU score on translation
FP32100%
INT899.2%(-0.8%)
INT496.8%(-3.2%)

Q&A Systems

F1 score on SQuAD
FP32100%
INT898.7%(-1.3%)
INT495.3%(-4.7%)

Classification

Accuracy on GLUE
FP32100%
INT899.5%(-0.5%)
INT497.2%(-2.8%)

Quantization Frameworks

We support all major frameworks

๐Ÿ”ฅ

PyTorch

Excellent Support
Methods:
torch.quantizationFX Graph ModeEager Mode
Key Benefits:
  • โœ“Native support
  • โœ“Easy to use
  • โœ“Good docs
Best for:
Research & Development
๐ŸŸ 

TensorFlow Lite

Excellent Support
Methods:
Post-trainingQATDynamic range
Key Benefits:
  • โœ“Mobile-first
  • โœ“Cross-platform
  • โœ“Optimized
Best for:
Mobile & Edge
โš™๏ธ

ONNX Runtime

Good Support
Methods:
Static quantizationDynamic quantization
Key Benefits:
  • โœ“Framework agnostic
  • โœ“Production-ready
  • โœ“Fast
Best for:
Production Deployment
๐ŸŸข

TensorRT

Excellent Support
Methods:
INT8 calibrationFP16Mixed precision
Key Benefits:
  • โœ“Fastest on NVIDIA
  • โœ“Auto-optimization
  • โœ“Low latency
Best for:
NVIDIA GPUs
๐Ÿค—

HuggingFace Optimum

Growing Support
Methods:
GPTQGGMLAWQ
Key Benefits:
  • โœ“LLM-focused
  • โœ“Easy integration
  • โœ“Pre-quantized models
Best for:
LLM Deployment
๐Ÿฆ™

llama.cpp

Excellent Support
Methods:
GGUF formatk-quantsMixed precision
Key Benefits:
  • โœ“CPU-optimized
  • โœ“No dependencies
  • โœ“Runs everywhere
Best for:
CPU Inference

Quick Integration

๐Ÿ”ฅPyTorch Example
import torch

# Load model
model = torch.load('model.pth')

# Quantize to INT8
quantized = torch.quantization
  .quantize_dynamic(
    model, {torch.nn.Linear}, 
    dtype=torch.qint8
  )

# 75% smaller, 3x faster!
๐Ÿค—HuggingFace Example
from optimum.gptq import GPTQQuantizer

# Load and quantize
quantizer = GPTQQuantizer(
  bits=4,
  dataset="c4"
)

# Quantize LLM
quantized_model = quantizer.quantize(
  model, save_dir="./quantized"
)

Advanced Optimization

Beyond basic quantization

โšก

Post-Training Quantization (PTQ)

Quantize pre-trained models without retraining

Easy
< 1 hour
Expected Accuracy
95-98%
Time Required
< 1 hour
Difficulty
Easy
Steps:
  1. 1.Load model
  2. 2.Calibrate with sample data
  3. 3.Convert weights
  4. 4.Done!
โœ“ Pros:
  • โ€ข Fast
  • โ€ข No training needed
  • โ€ข Good for most use cases
โœ— Cons:
  • โ€ข Slight accuracy loss
  • โ€ข Limited control
๐ŸŽฏ

Quantization-Aware Training (QAT)

Train model with quantization in mind for better accuracy

Medium
1-3 days
Expected Accuracy
98-99.5%
Time Required
1-3 days
Difficulty
Medium
Steps:
  1. 1.Insert fake quant nodes
  2. 2.Fine-tune for epochs
  3. 3.Calibrate ranges
  4. 4.Convert
โœ“ Pros:
  • โ€ข Higher accuracy
  • โ€ข Better quality
  • โ€ข Production-grade
โœ— Cons:
  • โ€ข Requires training
  • โ€ข More time
  • โ€ข Needs data
๐ŸŽจ

Mixed Precision

Different precision for different layers (sensitive layers stay FP16)

Advanced
2-5 days
Expected Accuracy
99%+
Time Required
2-5 days
Difficulty
Advanced
Steps:
  1. 1.Profile sensitivity
  2. 2.Mark layers
  3. 3.Selective quantization
  4. 4.Fine-tune
โœ“ Pros:
  • โ€ข Best accuracy
  • โ€ข Optimal performance
  • โ€ข Minimal loss
โœ— Cons:
  • โ€ข Complex
  • โ€ข Manual tuning
  • โ€ข Requires expertise

Cutting-Edge Techniques

GPTQ

Latest
Group-wise Post-Training Quantization

State-of-the-art 4-bit quantization for LLMs

Minimal accuracy lossFast inferenceLLM-optimized

AWQ

Latest
Activation-aware Weight Quantization

Preserve important weights based on activation patterns

Better than GPTQActivation-awareResearch-backed

SmoothQuant

Latest
Smoothing for Accurate Quantization

Balance activation and weight quantization difficulty

INT8 W8A8No accuracy lossProduction-ready

GGML/GGUF

Latest
Georgi Gerganov Machine Learning

CPU-optimized quantization format for llama.cpp

Runs on CPUMultiple quant levelsNo GPU needed

Real-World Use Cases

How quantization solves real problems

๐Ÿ“ฑ

Mobile Apps

โŒ Challenge:
Run AI on smartphones with limited resources
โœ“ Solution:
INT4 quantized models run on-device, no cloud needed
๐Ÿ“Š Results:
100ms latency5MB model sizePrivacy-first
Examples:
Voice assistantsPhoto editingReal-time translation
๐Ÿฅ

Healthcare

โŒ Challenge:
Deploy diagnostic AI at edge hospitals with no internet
โœ“ Solution:
Quantized models on local hardware, HIPAA-compliant
๐Ÿ“Š Results:
Offline operationReal-time diagnosisData stays local
Examples:
Medical imagingSymptom checkerDrug interaction
๐Ÿ›๏ธ

E-commerce

โŒ Challenge:
Handle millions of product recommendation requests
โœ“ Solution:
INT8 models reduce costs by 90% while scaling
๐Ÿ“Š Results:
$50Kโ†’$5K/month10x throughput< 100ms response
Examples:
Product recommendationsSearchChatbots
๐Ÿš—

Autonomous Vehicles

โŒ Challenge:
Real-time object detection with low latency
โœ“ Solution:
FP16/INT8 quantization for edge TPUs
๐Ÿ“Š Results:
< 50ms inferenceMulti-cameraFail-safe
Examples:
Object detectionLane keepingTraffic sign recognition
๐ŸŽฎ

Gaming

โŒ Challenge:
NPCs with realistic AI conversations
โœ“ Solution:
Quantized LLMs running locally, no server lag
๐Ÿ“Š Results:
< 200ms responseUnlimited NPCsAlways online
Examples:
NPC dialogueQuest generationDynamic storylines
๐Ÿ”Œ

IoT Devices

โŒ Challenge:
Run AI on microcontrollers with 512KB RAM
โœ“ Solution:
Aggressive INT4 quantization + pruning
๐Ÿ“Š Results:
< 500KB modelBattery-efficientEdge inference
Examples:
Smart homeWearablesIndustrial sensors

Success Metrics

๐Ÿ’ฐ
90%
Cost Reduction
โšก
4x
Faster Inference
๐Ÿ“ฆ
75%
Size Reduction
๐ŸŽฏ
95%+
Accuracy Retained

Supported Models

We quantize any LLM

๐Ÿฆ™

Llama Family

Most Popular
Variants:
โ€ข Llama 2 (7B-70B)
โ€ข Llama 3 (8B-70B)
โ€ข Code Llama
โ€ข Vicuna
โ€ข Alpaca
Quantization Support
FP16, INT8, INT4
๐Ÿค–

GPT Family

Production-Ready
Variants:
โ€ข GPT-J 6B
โ€ข GPT-NeoX 20B
โ€ข GPT4All
โ€ข Dolly
โ€ข StableLM
Quantization Support
FP16, INT8, INT4
โšก

Mistral / Mixtral

Trending
Variants:
โ€ข Mistral 7B
โ€ข Mixtral 8x7B
โ€ข Zephyr
โ€ข OpenChat
Quantization Support
FP16, INT8, INT4

Complete Model Support

ModelParametersOriginal SizeINT8 SizeINT4 SizeStatus
Llama 27B13 GB7 GB4 GBTested
Llama 213B26 GB13 GB7 GBTested
Llama 270B140 GB70 GB35 GBTested
Mistral7B14 GB7 GB4 GBTested
Mixtral8x7B90 GB45 GB23 GBTested
GPT-J6B12 GB6 GB3 GBTested
Falcon7B-180BVariesYesYesSupported
Your Custom ModelAnyAnyโœ“โœ“Contact Us

DIY vs Professional

Why hire us?

โŒ DIY Quantization

Figure it out yourself
๐Ÿ˜ฉ
Trial & Error
Weeks of experimentation
๐Ÿ“‰
Accuracy Loss
5-10% degradation common
๐ŸŒ
No Optimization
Suboptimal performance
๐Ÿ”ง
Format Issues
Compatibility problems
๐Ÿ›
Hidden Bugs
Production failures
๐Ÿ˜ฐ
No Support
You are on your own
2-4 weeks
Your time wasted

โœ“ TensorBlue Quantization

Professional service
๐ŸŽฏ
Expert Optimization
95%+ accuracy guaranteed
โšก
Fast Turnaround
2-5 days delivery
โœ…
Production-Ready
Tested & validated
๐Ÿ“ฆ
Multi-Format
ONNX, TensorRT, GGUF
๐Ÿ›ก๏ธ
Full Support
90-day guarantee
๐Ÿ“š
Documentation
Complete guides included
2-5 days
Professional delivery

ROI Calculator

Your Engineer's Time
$15K
2 weeks @ $150/hr
Our Service
$5K
Fixed price, 2-5 days
You Save
$10K
+ better results

Return on Investment

Quantization pays for itself in weeks

โŒ Before Quantization
$18K/mo
Running costs
GPU rental (A100 x2)$12,000
API calls (1B tokens)$5,000
Infrastructure$1,000
Annual Cost$216K
โœ“ After Quantization
$2K/mo
Running costs
GPU rental (T4 x1)$500
API calls (1B tokens)$500
Infrastructure$1,000
Annual Cost$24K

Annual Savings Breakdown

๐Ÿ’ฐ
$192K
Total Savings
๐Ÿ“Š
89%
Cost Reduction
โšก
4x
Faster Inference
๐Ÿ“…
9 days
ROI Payback

Investment Payback Timeline

Quantization Service-$5,000
Monthly Savings+$16,000
โœ“ Break-even in 9 days!

Beyond Cost Savings

๐Ÿš€
Faster Time to Market
Deploy in days, not months
โšก
Better User Experience
Sub-second responses
๐Ÿ†
Competitive Advantage
Offer AI at lower prices
STARTING FROM
$10K
โœ“2-4 week delivery
โœ“Multiple formats
โœ“Performance testing
โœ“2 months support
Get Custom Quote
Deliverables
โ†’Quantized models
โ†’Performance benchmarks
โ†’Deployment scripts
โ†’Memory analysis
โ†’Cost savings report

Our Process

From model to production in 2-5 days

1
Day 1

Model Analysis

Duration
4-6 hours
Tasks:
โœ“Receive your model
โœ“Profile architecture
โœ“Identify bottlenecks
โœ“Choose optimal technique
Deliverable:Technical analysis report
2
Day 1-2

Quantization

Duration
1-2 days
Tasks:
โœ“Apply quantization
โœ“Calibrate with data
โœ“Run validation tests
โœ“Optimize accuracy
Deliverable:Quantized model (INT8/INT4)
3
Day 2-3

Optimization

Duration
1 day
Tasks:
โœ“Layer-wise tuning
โœ“Mixed precision
โœ“Benchmark performance
โœ“Reduce latency
Deliverable:Optimized model
4
Day 3-4

Export & Testing

Duration
1 day
Tasks:
โœ“Export to formats
โœ“Integration testing
โœ“Stress testing
โœ“Documentation
Deliverable:Production-ready models
5
Day 5

Delivery & Support

Duration
Ongoing
Tasks:
โœ“Model delivery
โœ“Integration guide
โœ“Knowledge transfer
โœ“90-day support
Deliverable:Complete package + support

Our Guarantees

Risk-free quantization service

๐ŸŽฏ

Accuracy Guarantee

95%+ Accuracy Retention

We guarantee your quantized model maintains at least 95% of original accuracy. If we fall short, we refund 100%.

Includes:
โœ“Validated on your data
โœ“Extensive testing
โœ“Performance reports
โšก

Speed Guarantee

3x Faster Minimum

Your quantized model will be at least 3x faster than the original, or we keep working until it isโ€”no extra cost.

Includes:
โœ“Real-world benchmarks
โœ“Production environment
โœ“Latency optimization
๐Ÿ›ก๏ธ

Support Guarantee

90-Day Free Support

Full technical support for 90 days post-delivery. Bug fixes, optimization tweaks, and integration help included.

Includes:
โœ“Email & Slack support
โœ“Response within 24h
โœ“Unlimited questions
๐Ÿ’ฐ

Money-Back Guarantee

100% Refund If Unsatisfied

Not happy with the results? Get a full refund within first 7 days. No questions asked. We are that confident.

Includes:
โœ“7-day trial period
โœ“No lock-in
โœ“Full transparency

Why Trust Us?

๐Ÿ“ฆ
100+
Models Quantized
โญ
98%
Client Satisfaction
โœ…
0
Failed Projects
๐Ÿ’ฌ
< 24h
Support Response

Frequently Asked Questions

Everything you need to know

Still Have Questions?

Talk to a quantization expert. Free 30-minute consultation.

Optimize Your
AI Models

Reduce size by 75% while maintaining 95%+ accuracy